Elimination of plasma membrane phosphatidylinositol (4,5)-bisphosphate is required for exocytosis from mast cells.
نویسندگان
چکیده
The inositol lipid phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2] is involved in a myriad of cellular processes, including the regulation of exocytosis and endocytosis. In this paper, we address the role of PtdIns(4,5)P2 in compound exocytosis from rat peritoneal mast cells. This process involves granule-plasma membrane fusion as well as homotypic granule membrane fusion and occurs without any immediate compensatory endocytosis. Using a novel quantitative immunofluorescence technique, we report that plasma membrane PtdIns(4,5)P2 becomes transiently depleted upon activation of exocytosis, and is not detected on the membranes of fusing granules. Depletion is caused by phospholipase C activity, and is mandatory for exocytosis. Although phospholipase C is required for Ca2+ release from internal stores, the majority of the requirement for PtdIns(4,5)P2 hydrolysis occurs downstream of Ca2+ signalling - as shown in permeabilised cells, where the inositol (1,4,5)-trisphosphate-Ca2+ pathway is bypassed. Neither generation of the PtdIns(4,5)P2 metabolite, diacylglycerol (DAG) or simple removal and/or sequestration of PtdIns(4,5)P2 are sufficient for exocytosis to occur. However, treatment of permeabilised cells with DAG induces a small potentiation of exocytosis, indicating that it may be required. We propose that a cycle of PtdIns(4,5)P2 synthesis and breakdown is crucial for exocytosis to occur in mast cells, and may have a more general role in all professional secretory cells.
منابع مشابه
ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5)bisphosphate required for regulated exocytosis
ADP-ribosylation factor (ARF) 6 regulates endosomal plasma membrane trafficking in many cell types, but is also suggested to play a role in Ca2+-dependent dense-core vesicle (DCV) exocytosis in neuroendocrine cells. In the present work, expression of the constitutively active GTPase-defective ARF6Q67L mutant in PC12 cells was found to inhibit Ca2+-dependent DCV exocytosis. The inhibition of exo...
متن کاملPhosphatidylinositol(4,5)bisphosphate coordinates actin-mediated mobilization and translocation of secretory vesicles to the plasma membrane of chromaffin cells.
Neurosecretory vesicles undergo docking and priming before Ca(2+)-dependent fusion with the plasma membrane. Although de novo synthesis of phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P(2)) is required for exocytosis, its precise contribution is still unclear. Here we show that inhibition of the p110δ isoform of PI3-kinase by IC87114 promotes a transient increase in PtdIns(4,5)P(2), leadin...
متن کاملActivation of exocytosis by cross-linking of the IgE receptor is dependent on ADP-ribosylation factor 1-regulated phospholipase D in RBL-2H3 mast cells: evidence that the mechanism of activation is via regulation of phosphatidylinositol 4,5-bisphosphate synthesis.
The physiological stimulus to exocytosis in mast cells is the cross-linking of the high-affinity IgE receptor, FcepsilonR1, with antigen. We demonstrate a novel function for ADP-ribosylation factor 1 (ARF1) in the regulation of antigen-stimulated secretion using cytosol-depleted RBL-2H3 mast cells for reconstitution of secretory responses. When antigen is used as the stimulus, ARF1 also reconst...
متن کاملHIV-1 Tat protein inhibits neurosecretion by binding to phosphatidylinositol 4,5-bisphosphate.
HIV-1 transcriptional activator (Tat) enables viral transcription and is also actively released by infected cells. Extracellular Tat can enter uninfected cells and affect some cellular functions. Here, we examine the effects of Tat protein on the secretory activity of neuroendocrine cells. When added to the culture medium of chromaffin and PC12 cells, Tat was actively internalized and strongly ...
متن کاملPhosphatidylinositol 4,5-Bisphosphate Mediates the Targeting of the Exocyst to the Plasma Membrane for Exocytosis in Mammalian Cells□D
The exocyst is an evolutionarily conserved octameric protein complex that tethers post-Golgi secretory vesicles at the plasma membrane for exocytosis. To elucidate the mechanism of vesicle tethering, it is important to understand how the exocyst physically associates with the plasma membrane (PM). In this study, we report that the mammalian exocyst subunit Exo70 associates with the PM through i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 119 Pt 10 شماره
صفحات -
تاریخ انتشار 2006